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Abstract40me considerations about the stability criterion and

the dkpersion of the Finite Difference Time Domain Method in

General Curvilinear Coordinates are presented. An expression
for the stability criterion and for the dispersion relation is

found to be possible only for a mesh without curvature, and

for this particular case, a dispersion relation is obtained in three
dimensions. The analysis of this relation shows that a resolution of
10 cells per wave-length is enough in order to keep the dispersion

error within a reasonable limit. A study of the reflection in the
interface between two regions with different metrics is presented

as well.

Index Terms—General curvilinear coordinates, FDTD.

I. INTRODUCTION

T HE FDTD method has been successfully applied to

the study of electromagnetic wave propagation, and a

powerful generalization of this algorithm is the FDTD method

in General Curvilinear Coordinates (FDTD-GCC) [1 ]–[3]. The

FDTD-GCC mesh is able to conform to the shape of the

structure. The boundary conditions can be applied in a natural,

precise, and easy way. Further, we have the freedom to develop

a coarse mesh in regions where a soft behavior of the field is

expected and a finer mesh in corners and gaps, where high

field variations are suspected. Although the stability criterion

has been outlined by several authors, so far little has been

said about the dispersive properties of this technique and its

relative accuracy [4].

In this letter, it will be shown that the stability criterion

presented by the bibliography [2], [3], is only valid for a

homogeneous region in which the mesh has no curvature, or

in other words, for the mesh that keeps the direction of the

curvilinear bases constant, that is, with constant skewing. It is

a rough approach for the general case in which curvature in the

mesh is involved. For the particular case with no curvature, the

dispersive relationship for a three-dimensional mesh is derived.

The dispersive effects are studied for different propagation

directions with respect to the base vectors and for different

skewing angles between these base vectors (Fig. 1(a)). As
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Fig. 1. (a) Curvilinear basis vectors. (b) Normalized phase velocity u/(lee)

versus normalized cell size Ahl / A for meshes with various skewing angles

6’ with Ahl =- Ahz = Ahs. Propagation of the wave is along the JI

direction with a = O.

a general FDTD-GCC mesh is a non-uniform mesh with

different metric tensors in different regions of the modeling,

a brief analysis of the reflection in the transition between two

regions with different metrics is also presented.

II. THE DISPERSION CHARACTERISTTCSOF FDTD-GCC

It is assumed that any electromagnetic field can be de-

composed as a linear combination of plane monochromatic

waves, Therefore, the dispersion of the FDTD-GCC method

is analyzed by assuming a plane, monochromatic traveling

wave as a solution of the discretized vector wave equation.

We assume the following solution: ~(ii) = exp(wt – j~. Z)Z.

That is, a plane, monochromatic traveling wave in which
ii = (U1, U2, U3) are the generalized curvilinear c~ordinates,
z = ~~_l ~zA-l is the polarization vector, and {Al }~=1 are

the curv~inear bases.

In a general curvilinear coordinat~ sy~tem, the dual bases

{~t}~=l are defined as well so that A’. Al = $#. The gradient

operator can be written as,

(1)

and the application of V over the plane wave using centrall

differencing and assuming that the increment in the general
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Fig. 2. Normalized phase velocity cJ/ (kc) versus propagation angle CY

for various skewing angles 9 of the grid with Ahl /A = 0.1 and with
Ahl = Ahz = Ah3.

curvilinear coordinates is Aui = 1, can be expressed by,

3

()A(k;ui)
V = –2j )~~sin ~ ,

i.=l

and the divergence of the electric field becomes,

(2)

3

(

‘A(kiui)
V.i2=-2j~aisin z

)
. exp(wt – ji. ii). (3)

;=1 \

For a region in which the direction of the bases vectors is

constant, setting Au; = 1, we have A(kiu; ) = Ici. As long as

we have a plane wave, Z. ~ = O, and we obtain the condition

V oJ? = O. From this fact,, it is possible to derive the stability

criterion given by previous authors [2], [3].

If we have a general curvilinear mesh in which the orien-

tation of the bases change from point to point, which is the

general case, then A(k,ui ) = ki + u’Akz. The second term on

the right of the previous equation is a ~onphysical term due to

the curvature of the mesh. Thus, V - E = O is not guaranteed

to be true. This is an important fact that must be kept in

mind when using the FD’TD method in General Curvilinear

Coordinates. The divergence free conditions for the fields can

not be numerically achieved. However, the stability criterion

given in, [2], [3], although not exact, can be useful as a

reference.

For the particular case in which the mesh is without curva-

ture, the stability criterion is exact and for a region in which

the metric tensor is constant, gi~ = ~ - ~~ = constanti~, it

is possible to derive a numerical dispersive relation.

Using central differencing for the time derivative as well,

and substituting (2) into the vector wave equation, we obtain

the numerical three-dimensional dispersive relation for a mesh

having constant gi~,

sin2(~wAt) = ~

c2At2 ‘ i=,l,j=l ‘i’sin(:)sin(:) ‘4)

This is an implicit function of ~, where ; can be solved

numerically for each w.

III. NUMERICAL ANALYSIS

In order to simplify the analysis, we will assume a region

of the mesh with constant gi~. The cell dimensions are

Ahl, Ah2, Ah3, and the vectors am show: in Fig. l(a). & is

orthogonal to the plane defined by ~~1and A2 and 6’ is the angle

between these two vectors. In that region we have, gll = Ah?,

glz = Ah~Ahz Cos(g), g~s =+ 0, gzz = Ah;, gzs = 0,

gss = Ah~, where gij = Ai . Aj. From these, and assuming

a plane, monochromatic traveling wave that propagates with

angle a with respect to ~1 in the plane defined by ~1 and ~2

and polarized in the direction of A:, (4) becomes,

sin2(~wAt) = 1

C2At2 Ah? sin2 b’‘in’(’?cosa)

–2
Coso

(

kAh2
- sin

Ahl Ah2 sin2 #
~ Cos(a – 0)

)

‘Sin(?cos(’)
1

(

kAhz
sin2

+ Ah: sin2 b’ )
~ Cos(cl – 0) . (5)

This equation reduces to the standard dispersion relation for

a conventional orthogonal Cartesian mesh, [5], with @= 90°.

The above expression is also very similar to the one presented

by Ray [4] for a particular two-dimensional case, but there is

a slight difference of a factor of two ([4], (3)) that may be due

to some mistake in the derivation.

Equation (5) is first solved in order to obtain k for the

particular case of Fig. l(a) as a function of the mesh resolution

in terms of the wavelength. This is made for several angles

of skewing 0 between Al and A*2 and with a constant angle

of a = O of the incident wave. The cell dimensions are

set to Ahl = Ah2 = Ah3 and the time step is chosen

to be the maximum allowed by the stability criterion, [3],

At = l/(c~gll + 2g12 + g22 + g33).

The normalized phase velocity w/(kc) is presented as a

function of the wavelength resolution in Fig. l(b). An ideal

algorithm would have w/(kc) = 1, however the presented

results show that the dispersion error can be kept under a

reasonable limit for a resolution of the mesh in terms of the

wavelength of Ahl = Ah2 < A/10.

Equation (5) is solved agai~ in crder to obtain k for several

angles 19between Al and A2 as a function of the angle a

of the incident wave. The cell size is set to Ahl = Ahz =

Ah3 = A/10, and the time step is chosen in the same way as

the previous case. The normalized numerical phase velocity
is presented in Fig. 2. The presented results show that the

dispersion error is small enough for the resolution of the mesh,

and it is observed that the numerical phase velocity is always

maximum in the oblique direction to the cell.

Comparisons made by authors having solved the dispersive
relation for smaller At than the maximum allowed by the
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Fig. 3. Reflection in the transition from a mesh without skewing to a skewed
mesh, both with A~ ~ = Aah2 = l?&3 for different angles in the-skewing of

the second mesh. Al and A3 are the same in both meshes, and A2 is rotated
by (1 degrees in the second mesh with respect to the first one.

stability criterion, shows that the dispersion error increases

with decreasing At. These results are not shown in this letter.

Once the phase velocity is known for each angle of inci-

dence and skewing of the mesh, it is possible to calculate

the reflection in the interface between two regions that use a

different mesh. The reflection coefficient is derived from the

Fresnel equations [6]. The reflection in the transition from a

mesh without skewing to a skewed mesh with both having the

same space increments of Ahl = Ahz = Ah3 is presented in

Fig. 3 for different angles 8 in the skewing of the second mesh.

The vectors xl and X3 have the same direction in both meshes

while the orientation of 22 is changed in the second mesh with

respect to the first one. The reflection is found to be negligible

even for a very rough mesh with Ahl = Ahz = Ah3 = A/5.

IV. CONCLUSION

Some considerations were made about the stability con-

dition, and the dispersion relation in the Finite Difference

Time Domain algorithm in General Curvilinear Coordinates.

It was shown that a general analytical expression for both is

possible only for a mesh without curvature. For this specific

case, and for a constant metric tensor, a three-dimensional

dispersive relation was obtained. Moreover, this particular case

was analyzed, and it was found that the error in the phase

velocity can be kept under a reasonable limit with a resolution

above 10 cells per wavelength. The reflection in the interface

between two regions with a different metric was studied as

well and the value of the reflection coefficient was found to

be negligible.
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