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Some Considerations About the Finite
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Abstract—Some considerations about the stability criterion and
the dispersion of the Finite Difference Time Domain Method in
General Curvilinear Coordinates are presented. An expression
for the stability criterion and for the dispersion relation is
found to be possible only for a mesh without curvature, and
for this particular case, a dispersion relation is obtained in three
dimensions. The analysis of this relation shows that a resolution of
10 cells per wave-length is enough in order to keep the dispersion
error within a reasonable limit. A study of the reflection in the
interface between two regions with different metrics is presented
as well.

Index Terms—General curvilinear coordinates, FDTD.

I. INTRODUCTION

HE FDTD method has been successfully applied to

the study of electromagnetic wave propagation, and a
powerful generalization of this algorithm is the FDTD method
in General Curvilinear Coordinates (FDTD-GCC) [1]-[3]. The
FDTD-GCC mesh is able to conform to the shape of the
structure. The boundary conditions can be applied in a natural,
precise, and easy way. Further, we have the freedom to develop
a coarse mesh in regions where a soft behavior of the field is
expected and a finer mesh in corners and gaps, where high
field variations are suspected. Although the stability criterion
has been outlined by several authors, so far little has been
said about the dispersive properties of this technique and its
relative accuracy [4].

In this letter, it will be shown that the stability criterion
presented by the bibliography [2], [3], is only valid for a
homogeneous region in which the mesh has no curvature, or
in other words, for the mesh that keeps the direction of the
curvilinear bases constant, that is, with constant skewing. It is
a rough approach for the general case in which curvature in the
mesh is involved. For the particular case with no curvature, the
dispersive relationship for a three-dimensional mesh is derived.
The dispersive effects are studied for different propagation
directions with respect to the base vectors and for different
skewing angles between these base vectors (Fig. 1(a)). As
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Fig. 1. (a) Curvilinear basis vectors. (b) Normalized phase velocity w/(kc)

versus normalized cell size Ahy /X for meshes with various skewing angles
6 with Ahy = Ah2 = Ahs. Propagation of the wave is along the A
direction with o = 0.

a general FDTD-GCC mesh is a non-uniform mesh with
different metric tensors in different regions of the modeling,
a brief analysis of the reflection in the transition between two
regions with different metrics is also presented.

II. THE DISPERSION CHARACTERISTICS OF FDTD-GCC

It is assumed that any electromagnetic field can be de-
composed as a linear combination of plane monochromatic
waves. Therefore, the dispersion of the FDTD-GCC method
is analyzed by assuming a plane, monochromatic traveling
wave as a solution of the discretized vector wave quation.
We assume the following solution: E(@) = exp(wt — 5k - @)€.
That is, a plane, monochromatic traveling wave in which
i = (ul u?,u®) are the generalized curvilinear coordinates,

=, alAl is the polarization vector, and {A;}?_, are
the curvilinear bases.

In a general curvilinear coordmate system, the ‘dual bases
{A1}3_, are defined as well so that A’ - 4; = 6}. The gradient
operator can be written as,

7] d
Al
V= A—81+A82+A el 1)

and the application of V over the plane wave using central
differencing and assuming that the increment in the general
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Fig. 2. Normalized phase velocity w/(kc) versus propagation angle o
for various skewing angles 8 of the grid with Ahy/A = 0.1 and with
Ahy = Ahs = Ahs.

curvilinear coordinates is Au’ = 1, can be expressed by,

C

and the divergence of the electric field becomes,

=-2j Za sm(

t==1

3
V=-2j E: Alsin

4==1

)> -exp(wt — jk - ). (3)

For a region in which the direction of the bases vectors is
constant, setting Au‘ = 1, we have A(k;u’) = k;. As long as
we have a plane wave, €- k= 0, and we obtain the condition
V - E = 0. From this fact, it is possible to derive the stability
criterion given by previous authors {2}, [3].

If we have a general curvilinear mesh in which the orien-
tation of the bases change from point to point, which is the
general case, then A(k,u‘) = k; +u*Ak,. The second term on
the right of the previous equation is a nonphysical term due to
the curvature of the mesh. Thus, V - E =0 is not guaranteed
to be true. This is an irnportant fact that must be kept in
mind when using the FDTD method in General Curvilinear
Coordinates. The divergence free conditions for the fields can
not be numerically achieved. However, the stability criterion
given in, [2], (3], although not exact, can be useful as a
reference.

For the particular case in which the mesh is without curva-
ture, the stability criterion is exact and for a region in which
the metric tensor is constant, g9/ = A* - AJ = constant® it
is possible to derive a numerical dispersive relation.

Using central differencing for the time derivative as well,
and substituting (2) into the vector wave equation, we obtain
the numerical three-dimensional dispersive relation for a mesh

having constant g¢7,
Z g”sm( )sm(kz ) )
i==1,5=1

sin?(1 sin”(zwAt) wAt)
T 2AZ

This is an implicit function of %, where k can be solved
numerically for each w.

III. NUMERICAL ANALYSIS

In order to simplify the analysis, we will assume a region
of the mesh with constant ¢*/. The cell dimensions are
Ahq, Ahg, Ahg, and the vectors arc shown in Fig. 1(a). /T;; is
orthogonal to the plane defined by A7 and ffg and f is the angle
between these two vectors. In that region we have, g1 = Ahl,
g12 = AhiAhgcos(8), g13 = 0, g2o = Ah3, ga3 = 0,
933 = Ah3, where gij = A A From these, and assuming
a plane, monochromatic travehng wave that propagates with
angle « with respect to A in the plane defined by A7 and A,
and polarized in the direction of A’3, (4) becomes,

Ly (mhl )
sim - B COS ¢

cos . { kAhsy
-2 —5--sin cos(a — 6)
Ah1Ahgsin® i 2

. (k:Ahl )
X sin COS (¥

1 . 9 kAho
+Ah%sin29sm ( 5 cos(a—é))). )

This equation reduces to the standard dispersion relation for
a conventional orthogonal Cartesian mesh, [3], with 8 = 90°.
The above expression is also very similar to the one presented
by Ray [4] for a particular two-dimensional case, but there is
a slight difference of a factor of two ([4], (3)) that may be due
to some mistake in the derivation.

Equation (5) is first solved in order to obtain k& for the
particular case of Fig. 1(a) as a function of the mesh resolution
in terms of the wavelength. Th1s is made for several angles
of skewmg 6 between A; and A, and with a constant angle
of &« = 0 of the incident wave. The cell dimensions are
set to Ahy = Ahs = Ahg and the time step is chosen
to be the maximum allowed by the stability criterion, [3],
At = 1/(c\/g™ + 292 + g2 + ¢33).

The normalized phase velocity w/(kc) is presented as a
function of the wavelength resolution in Fig. 1(b). An ideal
algorithm would have w/(kc) = 1, however the presented
results show that the dispersion error can be kept under a
reasonable limit for a resolution of the mesh in terms of the
wavelength of Ah; = Ahy < A/10.

Equation (5) is solved again in order to obtain & for several
angles § between Ay and A, as a function of the angle o
of the incident wave. The cell size is set to Ah; = Ahy =
Ahgz = A/10, and the time step is chosen in the same way as
the previous case. The normalized numerical phase velocity
is presented in Fig. 2. The presented results show that the
dispersion error is small enough for the resolution of the mesh,
and it is observed that the numerical phase velocity is always
maximum in the oblique direction to the cell

Comparisons made by authors having solved the dispersive
relation for smaller A¢ than the maximum allowed by the

sin’(wAl) 1
A2 Ah2sin’4
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Fig. 3. Reflection in the transition from a mesh without skewing to a skewed
mesh, both with Ah 1= Ah2 = Ahg for different angles in the skewmg of
the second mesh. A1 and A3 are the same in both meshes, and Az is rotated
by 6 degrees in the second mesh with respect to the first one.

stability criterion, shows that the dispersion error increases
with decreasing At. These results are not shown in this letter.

Once the phase velocity is known for each angle of inci-
dence and skewing of the mesh, it is possible to calculate
the reflection in the interface between two regions that use a
different mesh. The reflection coefficient is derived from the
Fresnel equations [6]. The reflection in the transition from a
mesh without skewing to a skewed mesh with both having the
same space increments of Ah; = Ahg = Ahg is presented in
Fig. 3 for dlfferent angles 6 in the skewing of the second mesh.
The vectors A1 and A3 have the same direction in both meshes
while the orientation of A» is changed in the second mesh with
respect to the first one. The reflection is found to be negligible
even for a very rough mesh with Ahy = Ahy = Ahg = A\/5.

IV. CONCLUSION

Some considerations were made about the stability con-
dition, and the dispersion relation in the Finite Difference
Time Domain algorithm in General Curvilinear Coordinates.
It was shown that a general analytical expression for both is
possible only for a mesh without curvature. For this specific
case, and for a constant metric tensor, a three-dimensional
dispersive relation was obtained. Moreover, this particular case
was analyzed, and it was found that the error in the phase
velocity can be kept under a reasonable limit with a resolution
above 10 cells per wavelength. The reflection in the interface
between two regions with a different metric was studied as
well and the value of the reflection coefficient was found to
be negligible.
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